Learning to Play Atari Games
نویسندگان
چکیده
Teaching computers to play video games is a complex learning problem that has recently seen increased attention. In this paper, we develop a system that, using constant model and hyperparameter settings, learns to play a variety of Atari games. In order to accomplish this task, we extract object features from the game screen, and provide these features as input into reinforcement learning algorithms. We detail our testing of different hyperparameter settings for two reinforcement learning algorithms, using both linear and neural network function approximators, in order to compare the performance of these approaches. We also consider learning techniques such as the use of replay memory with Q-learning, finding that even on simple MDPs this method significantly improves performance. Finally, we evaluate our model, selected through validation on the game Breakout, on a test set of different video games.
منابع مشابه
Playing Atari Games with Deep Reinforcement Learning and Human Checkpoint Replay
This paper introduces a novel method for learning how to play the most difficult Atari 2600 games from the Arcade Learning Environment using deep reinforcement learning. The proposed method, called human checkpoint replay, consists in using checkpoints sampled from human gameplay as starting points for the learning process. This is meant to compensate for the difficulties of current exploration...
متن کاملDeep Apprenticeship Learning for Playing Video Games
Recently it has been shown that deep neural networks can learn to play Atari games by directly observing raw pixels of the playing area. We show how apprenticeship learning can be applied in this setting so that an agent can learn to perform a task (i.e. play a game) by observing the expert, without any explicitly provided knowledge of the game’s internal state or objectives. Background Mnih et...
متن کاملLearning values across many orders of magnitude
Most learning algorithms are not invariant to the scale of the signal that is being approximated. We propose to adaptively normalize the targets used in the learning updates. This is important in value-based reinforcement learning, where the magnitude of appropriate value approximations can change over time when we update the policy of behavior. Our main motivation is prior work on learning to ...
متن کاملLearning functions across many orders of magnitudes
Most learning algorithms are not invariant to the scale of the function that is being approximated. We propose to adaptively normalize the targets used in learning. This is useful in value-based reinforcement learning, where the magnitude of appropriate value approximations can change over time when we update the policy of behavior. Our main motivation is prior work on learning to play Atari ga...
متن کاملDeep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning
The combination of modern Reinforcement Learning and Deep Learning approaches holds the promise of making significant progress on challenging applications requiring both rich perception and policy-selection. The Arcade Learning Environment (ALE) provides a set of Atari games that represent a useful benchmark set of such applications. A recent breakthrough in combining model-free reinforcement l...
متن کامل